Skip to contents

Introduction

Pivot tables are generally used to present raw and summary data. They are generated from spreadsheets and, more recently, also from R (pivottabler).

If we generate pivot tables from our own data, flattabler package is not necessary. But, if we get data in pivot table format and need to represent or analyse it using another tool, this package can be very helpful: It can save us several hours of programming or manual transformation.

flattabler package offers a set of operations that allow us to transform one or more pivot tables into a flat table.

The rest of this document is structured as follows: First, an illustrative example of transforming a pivot table into a flat table is presented. Then, the operations available in flattabler package, classified according to their purpose, are presented. Finally, the document ends with the conclusions section.

An illustrative example

In this example, given a pivot table and the flat table obtained from it, the transformations performed are presented. Next, a function is defined that groups these transformations. This function is applied to a list of pivot tables to obtain a single flat table. Finally, it is shown how the flat table can be modified using functions from tidyverse package components.

Pivot table

A pivot table allows to represent information in a structured way, mainly to be analysed by a person or to make a graphical representation of it. In addition to a header and/or footer, it contains label rows and columns, and a matrix of values, usually numeric data.

  c1 c2 c3 c4 c5 c6 c7
r1 M4 E D
r2 e2 Total e2 Total general
r3 B A d3 d4 d5
r4 b1 a05 70,40 1.089,00 1.159,40 1.159,40
r5 a09 674,31 674,31 674,31
r6 a13 421,08 1.055,12 64,68 1.540,88 1.540,88
r7 a17 96,00 1.347,84 545,28 1.989,12 1.989,12
r8 Total b1 1.261,79 3.491,96 609,96 5.363,71 5.363,71
r9 b2 a02 924,80 1.867,02 73,50 2.865,32 2.865,32
r10 a06 1.058,40 494,19 139,65 1.692,24 1.692,24
r11 a10 791,04 121,03 912,07 912,07
r12 a14 4.698,00 40,96 4.738,96 4.738,96
r13 a18 150,00 443,52 593,52 593,52
r14 Total b2 7.622,24 2.966,72 213,15 10.802,11 10.802,11
r15 b3 a03 658,56 203,52 148,48 1.010,56 1.010,56
r16 a07 92,00 1.466,08 1.558,08 1.558,08
r17 a15 2.043,00 184,96 544,18 2.772,14 2.772,14
r18 a19 393,96 1.056,25 1.450,21 1.450,21
r19 Total b3 3.187,52 2.910,81 692,66 6.790,99 6.790,99
r20 b4 a04 263,13 204,80 489,00 956,93 956,93
r21 a08 69,66 1.261,17 101,50 1.432,33 1.432,33
r22 a12 346,00 1.008,61 124,74 1.479,35 1.479,35
r23 a16 1.399,68 142,08 43,36 1.585,12 1.585,12
r24 a20 34,88 261,95 83,00 379,83 379,83
r25 Total b4 2.113,35 2.878,61 841,60 5.833,56 5.833,56
r26 Total general 14.184,90 12.248,10 2.357,37 28.790,37 28.790,37

The table above, contained in the df_ex variable of the package, has the following parts:

  • The header is made up of row r1 and the intersection between rows and columns of labels (cells of c1 and c2 with r2 and r3). Let us suppose that the content of the cell (r1, c1) is especially relevant, it is part of the table header and identifies the content of this pivot table with respect to others: It is the identifier of the page.

  • Columns c1 and c2, also rows r2 and r3, contain labels, except those of the intersection that are part of the header. It is common to try not to repeat the values of the outer labels, it being understood that, if there is no value, the value of that position is the last one shown in the same row or column (this is the case in column c1 and in row r2). In the innermost labels, if there are no values, it is because the corresponding position in the outer row or column corresponds to an aggregate (this is the case in column c2 and in row r3).

  • The matrix of values is made up of rows and columns after those containing labels (rows from r4 on, and columns from c3 on). Each value of this matrix is characterized by the combination of labels of the corresponding row and column. It is common to find null values in that matrix because the data is not produced or recorded for the combination of labels that define it, that is, the data is usually scattered. In addition to base data, aggregated data can be included in the matrix. Since it was intended for a person, the thousands separator had been used and, both this and the decimal separator, had been used with the Spanish style.

Obtaining a flat table

A flat database or flat-file database is a database that only contains a single table. A flat table is a generally denormalized table that is not related to other tables. It is not necessarily tidy data (in the sense of the tidyverse package) but in each column all the data must be of the same type, so that it can be easily stored in a RDBMS (Relational Database Management System).

A pivot table is not a flat table, but from a pivot table we can obtain a flat table, that is what we are going to do with the help of the flattabler package. Below are the transformations performed using its functions.

library(flattabler)

ft <- pivot_table(df_ex) |>
  set_page(1, 1) |>
  remove_top(1) |>
  define_labels(n_col = 2, n_row = 2) |>
  fill_labels() |>
  remove_agg() |>
  fill_values() |>
  remove_k() |>
  replace_dec() |>
  unpivot()

Starting from the pivot table in the variable df_ex:

  1. We get an object using the pivot_table() function, the constructor of the pivot_table class.

  2. We define that the value that identifies the pivot table (its page) is in cell (r1, c1), by means of set_page(1, 1).

  3. We should leave only the labels and the matrix of values, therefore rows or columns with other information have to be removed. The cells between the rows and columns of labels are ignored (cells of c1 and c2 with r2 and r3). We delete the first row using remove_top(1) because it does not contain labels.

  4. Then, we define the number of rows and columns containing labels using define_labels(n_col = 2, n_row = 2). There are two columns and two rows of labels.

  5. Since there are more than one row or column with labels, the values of the labels of the first row and column have not been repeated. They are filled using fill_labels().

  6. The pivot table contains aggregated data. It is removed by remove_agg(). It is recognized exclusively because there are no values in the row or column of the labels next to the array of values.

  7. The array of values has gaps that, instead of having a numeric value, have an empty string. In R it is more appropriate to have NA if the data is not available. This operation is performed through fill_values().

  8. The example is a Spanish report that uses thousands and decimal separators in the value matrix. We need to adapt them to the R syntax for numbers. This operation is carried out using remove_k() to remove the thousands separator and replace_dec() to replace the decimal separator.

  9. Finally, it is transformed into a flat table by unpivot(): each row corresponds to a value with its combination of labels. By default, NA values are not considered.

The result obtained can be seen in the following table. An additional label has been added with the value that identifies the pivot table, the pivot table page.

page col1 col2 row1 row2 value
M4 b1 a05 e2 d3 70.40
M4 b1 a05 e2 d4 1089.00
M4 b1 a09 e2 d3 674.31
M4 b1 a13 e2 d3 421.08
M4 b1 a13 e2 d4 1055.12
M4 b1 a13 e2 d5 64.68
M4 b1 a17 e2 d3 96.00
M4 b1 a17 e2 d4 1347.84
M4 b1 a17 e2 d5 545.28
M4 b2 a02 e2 d3 924.80
M4 b2 a02 e2 d4 1867.02
M4 b2 a02 e2 d5 73.50
M4 b2 a06 e2 d3 1058.40
M4 b2 a06 e2 d4 494.19
M4 b2 a06 e2 d5 139.65
M4 b2 a10 e2 d3 791.04
M4 b2 a10 e2 d4 121.03
M4 b2 a14 e2 d3 4698.00
M4 b2 a14 e2 d4 40.96
M4 b2 a18 e2 d3 150.00
M4 b2 a18 e2 d4 443.52
M4 b3 a03 e2 d3 658.56
M4 b3 a03 e2 d4 203.52
M4 b3 a03 e2 d5 148.48
M4 b3 a07 e2 d3 92.00
M4 b3 a07 e2 d4 1466.08
M4 b3 a15 e2 d3 2043.00
M4 b3 a15 e2 d4 184.96
M4 b3 a15 e2 d5 544.18
M4 b3 a19 e2 d3 393.96
M4 b3 a19 e2 d4 1056.25
M4 b4 a04 e2 d3 263.13
M4 b4 a04 e2 d4 204.80
M4 b4 a04 e2 d5 489.00
M4 b4 a08 e2 d3 69.66
M4 b4 a08 e2 d4 1261.17
M4 b4 a08 e2 d5 101.50
M4 b4 a12 e2 d3 346.00
M4 b4 a12 e2 d4 1008.61
M4 b4 a12 e2 d5 124.74
M4 b4 a16 e2 d3 1399.68
M4 b4 a16 e2 d4 142.08
M4 b4 a16 e2 d5 43.36
M4 b4 a20 e2 d3 34.88
M4 b4 a20 e2 d4 261.95
M4 b4 a20 e2 d5 83.00

Since this table is not intended to be analysed directly by a person, aggregated data has been removed as well as data that was not available for tag combinations (of course this is optional). The numerical data has been transformed so that it can be easily processed in R.

The result of the transformations is a tibble that can be further transformed using the functions of the tidyverse package.

Transforming a set of pivot tables

Once we have defined the necessary transformations for a pivot table, we can apply them to any other with the same structure. Candidate tables can have different number of rows or columns, depending on the number of labels, but they must have the same number of rows and columns of labels, and the same number of header or footer rows, so that the transformations are the same for each table.

To easily perform this operation, we define a function f from the transformations, as shown below.

f <- function(pt) {
  pt |>
  set_page(1, 1) |>
  remove_top(1) |>
  define_labels(n_col = 2, n_row = 2) |>
  fill_labels() |>
  remove_agg() |>
  fill_values() |>
  remove_k() |>
  replace_dec() |>
  unpivot()
}

The only difference from the original transformation is that we don’t need to build a pivot_table object because the input functions provided by the package build it automatically.

The package has functions that allow data to be read in either text format or Excel format, from a single file or from a folder with multiple files. For example, the following code reads files in CSV format contained in a package data folder. The result is a list of pivot_table objects that can be directly transformed.

folder <- system.file("extdata", "csvfolder", package = "flattabler")
lpt <- read_text_folder(folder)

class(lpt[[1]])
#> [1] "pivot_table"

Given a list of pivot tables, lpt, flatten_table_list() applies the transformation defined by function f to each of them, and merges the results into a flat table.

ftl <- flatten_table_list(lpt, f)

In this case, the full result is not shown in this document because it takes up too much space, but a sample is shown below.

page col1 col2 row1 row2 value
M1 b1 a05 e2 d4 2.25
M1 b1 a09 e1 d1 2.55
M1 b1 a13 e1 d2 1.02
M1 b1 a13 e2 d3 3.48
M1 b1 a17 e2 d5 2.13
M1 b4 a04 e2 d5 4.89
M1 b4 a08 e1 d2 1.01
M1 b4 a16 e1 d1 1.43
M1 b4 a16 e2 d3 2.43
M2 b1 a05 e2 d3 8
M2 b1 a05 e2 d4 22
M2 b1 a09 e2 d3 13
M2 b1 a17 e2 d3 5
M2 b2 a02 e2 d5 5
M2 b2 a06 e1 d1 24
M2 b2 a06 e2 d3 21
M2 b2 a10 e2 d3 16
M2 b2 a18 e1 d2 10
M2 b2 a18 e2 d4 12
M2 b3 a15 e2 d5 13
M2 b4 a04 e2 d3 7
M2 b4 a12 e2 d3 10
M2 b4 a16 e2 d4 8
M3 b1 a17 e1 d2 44.62
M3 b2 a02 e1 d1 25.60
M3 b2 a10 e1 d2 25.11
M3 b4 a08 e1 d1 30.42
M3 b4 a08 e1 d2 15.15
M4 b1 a13 e2 d3 421.08
M4 b1 a13 e2 d4 1055.12
M4 b1 a17 e2 d3 96.00
M4 b1 a17 e2 d4 1347.84
M4 b2 a06 e2 d4 494.19
M4 b2 a10 e2 d3 791.04
M4 b2 a14 e2 d3 4698.00
M4 b2 a18 e2 d3 150.00
M4 b3 a07 e2 d3 92.00
M4 b3 a15 e2 d3 2043.00
M4 b3 a19 e2 d4 1056.25
M4 b4 a12 e2 d4 1008.61

Once we have a flat table, implemented using tibble, we can use tidyverse package components to transform it, as shown below. In this case all results are displayed.

t <- ftl |>
  tidyr::pivot_wider(names_from = page, values_from = value) |>
  dplyr::rename(B = col1, A = col2, E = row1, D = row2) |> 
  dplyr::select(A, B, D, E, M1, M2, M3, M4) |> 
  dplyr::arrange(A, B, D, E)
A B D E M1 M2 M3 M4
a01 b1 d4 e2 1.88 9 NA NA
a02 b2 d1 e1 NA 10 25.60 NA
a02 b2 d2 e1 NA 10 45.10 NA
a02 b2 d3 e2 NA 34 NA 924.80
a02 b2 d4 e2 NA 29 NA 1867.02
a02 b2 d5 e2 NA 5 NA 73.50
a03 b3 d1 e1 NA 4 12.96 NA
a03 b3 d2 e1 NA 10 26.70 NA
a03 b3 d3 e2 NA 14 NA 658.56
a03 b3 d4 e2 NA 8 NA 203.52
a03 b3 d5 e2 NA 8 NA 148.48
a04 b4 d1 e1 1.84 9 16.56 NA
a04 b4 d2 e1 1.51 16 24.16 NA
a04 b4 d3 e2 5.37 7 NA 263.13
a04 b4 d4 e2 3.20 8 NA 204.80
a04 b4 d5 e2 4.89 10 NA 489.00
a05 b1 d1 e1 1.91 41 78.31 NA
a05 b1 d3 e2 1.10 8 NA 70.40
a05 b1 d4 e2 2.25 22 NA 1089.00
a06 b2 d1 e1 NA 24 63.60 NA
a06 b2 d2 e1 NA 15 30.30 NA
a06 b2 d3 e2 NA 21 NA 1058.40
a06 b2 d4 e2 NA 17 NA 494.19
a06 b2 d5 e2 NA 7 NA 139.65
a07 b3 d1 e1 NA 6 13.98 NA
a07 b3 d3 e2 NA 5 NA 92.00
a07 b3 d4 e2 NA 28 NA 1466.08
a08 b4 d1 e1 1.69 18 30.42 NA
a08 b4 d2 e1 1.01 15 15.15 NA
a08 b4 d3 e2 0.86 9 NA 69.66
a08 b4 d4 e2 1.73 27 NA 1261.17
a08 b4 d5 e2 4.06 5 NA 101.50
a09 b1 d1 e1 2.55 16 40.80 NA
a09 b1 d2 e1 2.74 12 32.88 NA
a09 b1 d3 e2 3.99 13 NA 674.31
a10 b2 d1 e1 NA 6 9.90 NA
a10 b2 d2 e1 NA 27 25.11 NA
a10 b2 d3 e2 NA 16 NA 791.04
a10 b2 d4 e2 NA 7 NA 121.03
a11 b3 d1 e1 NA 7 23.17 NA
a11 b3 d2 e1 NA 5 17.75 NA
a11 b3 d3 e2 NA 17 NA NA
a11 b3 d5 e2 NA 13 NA NA
a12 b4 d2 e1 1.47 32 47.04 NA
a12 b4 d3 e2 3.46 10 NA 346.00
a12 b4 d4 e2 3.49 17 NA 1008.61
a12 b4 d5 e2 1.54 9 NA 124.74
a13 b1 d1 e1 2.99 12 35.88 NA
a13 b1 d2 e1 1.02 12 12.24 NA
a13 b1 d3 e2 3.48 11 NA 421.08
a13 b1 d4 e2 2.18 22 NA 1055.12
a13 b1 d5 e2 1.32 7 NA 64.68
a14 b2 d1 e1 NA 32 40.32 NA
a14 b2 d2 e1 NA 8 25.68 NA
a14 b2 d3 e2 NA 45 NA 4698.00
a14 b2 d4 e2 NA 4 NA 40.96
a15 b3 d1 e1 NA 14 42.98 NA
a15 b3 d3 e2 NA 30 NA 2043.00
a15 b3 d4 e2 NA 17 NA 184.96
a15 b3 d5 e2 NA 13 NA 544.18
a16 b4 d1 e1 1.43 10 14.30 NA
a16 b4 d2 e1 1.97 18 35.46 NA
a16 b4 d3 e2 2.43 24 NA 1399.68
a16 b4 d4 e2 2.22 8 NA 142.08
a16 b4 d5 e2 2.71 4 NA 43.36
a17 b1 d1 e1 3.71 9 33.39 NA
a17 b1 d2 e1 1.94 23 44.62 NA
a17 b1 d3 e2 3.84 5 NA 96.00
a17 b1 d4 e2 2.34 24 NA 1347.84
a17 b1 d5 e2 2.13 16 NA 545.28
a18 b2 d1 e1 NA 20 44.80 NA
a18 b2 d2 e1 NA 10 27.20 NA
a18 b2 d3 e2 NA 10 NA 150.00
a18 b2 d4 e2 NA 12 NA 443.52
a19 b3 d1 e1 NA 23 47.15 NA
a19 b3 d2 e1 NA 19 53.77 NA
a19 b3 d3 e2 NA 14 NA 393.96
a19 b3 d4 e2 NA 25 NA 1056.25
a20 b4 d1 e1 2.70 16 43.20 NA
a20 b4 d3 e2 2.18 4 NA 34.88
a20 b4 d4 e2 1.55 13 NA 261.95
a20 b4 d5 e2 3.32 5 NA 83.00

Pivot table operations

To transform one or more pivot tables into a flat table, the workflow is as follows:

  1. Pivot table import: Import pivot tables into an object or list of objects. We start from data in text or Excel files, or previously imported data in a data frame, and generate pivot table objects from them.

  2. Pivot table definition: Study the structure of the data and define the pivot table. If there are several homogeneous pivot tables, we will focus on one, the definition should be applicable to all of them.

    • Define the characteristics of the pivot table: Number of rows and columns with labels, and page value (identifies the pivot table).
    • Remove the rows and columns that are not part of the pivot table: It should only contain the rows and columns of labels and an array of values.
  3. Pivot table transformation: Optionally, complete or transform the components (labels and values) of the pivot table.

  4. Flat table generation: Generate the flat table from the definition of the pivot table and the available data. If there are multiple pivot tables, apply the defined operations to all of them and merge the result.

In this section, the operations available in flattabler package, classified according to this workflow, are presented.

Pivot table import

The objective of import operations is to obtain external data that contains one or more pivot tables to transform them.

Three formats have been considered: text file, Excel file, and data frame.

In the case of working with files, the situation of jointly treating all the files in a folder has also been considered. In the case of Excel, alternatively, all the sheets in a file can be treated together.

The S3 pivot_table class has been defined in the package. Transform operations are defined for objects of this class. Import operations can be classified into two groups: those that return a pivot_table object, and those that return a list of pivot_table objects. Objects in a list can be transformed together.

Operations that return an object

  • pivot_table(): Creates a pivot_table object from a data frame. The data frame is expected to contain one or more pivot tables. Additional information associated with the pivot table can be indicated. The data frame data is converted to character type. Example:
pt <- pivot_table(df_ex)

pt <- pivot_table(df_ex, page = "M4")
  • read_text_file(): Reads a text file and creates a pivot_table object. The file is expected to contain one or more pivot tables. Each line in the file corresponds to a row in a table; within each row, columns are defined by a separator character. The file name can be included as part of the object attributes. Example:
file <- system.file("extdata", "csv/set_v_ie.csv", package = "flattabler")
pt <- read_text_file(file, define_page = TRUE)
  • read_excel_sheet(): Reads an Excel file sheet and creates a pivot_table object. The sheet is expected to contain one or more pivot tables. Each line in the sheet corresponds to a row in a table. The file and sheet names can be included as part of the object attributes. Example:
file <- system.file("extdata", "excel/set_v.xlsx", package = "flattabler")
pt <- read_excel_sheet(file, define_page = 3)

Operations that return a list of objects

  • divide(): Divides a table into tables separated by some empty row or column. Sometimes multiple pivot tables are placed in a text document or Excel sheet, imported as one text table. This operation recursively divides the initial table into tables separated by some empty row or column. Once a division has been made, it tries to divide each part of the result. An object is generated for each indivisible pivot table. Returns a list of pivot_table objects. Example:
pt <- pivot_table(df_set_h_v)
lpt <- pt |> divide()
  • read_text_folder(): Reads all text files in a folder and creates a list of pivot_table objects, one from each file. Each file is expected to contain a pivot table. Each line in a file corresponds to a row in a table; within each row, columns are defined by a separator character. File name can be included as part of each object attributes. Example:
folder <- system.file("extdata", "csvfolder", package = "flattabler")
lpt <- read_text_folder(folder)
  • read_excel_folder(): Reads one sheet from each of the Excel files in a folder and creates a list of pivot_table objects, one from each sheet or, which is the same in this case, one from each file. Each sheet is expected to contain a pivot table. Each line in a file corresponds to a row in a table. File and sheet names can be included as part of each object attributes. Example:
folder <- system.file("extdata", "excelfolder", package = "flattabler")
lpt <- read_excel_folder(folder)
  • read_excel_file(): Reads sheets from an Excel file and creates a pivot_table object list, one from each sheet. Each sheet is expected to contain a pivot table. Each line in a sheet corresponds to a row in a table. The file and sheet names are included as part of each object attributes. Example:
file <- system.file("extdata", "excel/set_sheets.xlsx", package = "flattabler")
lpt <- read_excel_file(file)

Pivot table definition

Once we have a pivot_table object or list of objects, pivot tables have to be defined. Each object generated by import operations contains a text table, it is expected to contain a pivot table, but may also have more information, generally in the form of a table header or footer. Through this set of operations we transform the text table in the object into a pivot table and define its characteristics.

A pivot_table object should only contain label rows and columns, and an matrix of values, usually numeric data. Additional information can be used to identify the pivot table relative to other similar tables: can be used to define the pivot table page.

Page: We consider the page of the pivot table as the literal that identifies it with respect to other homogeneous tables; generally it is the value of an attribute (i.e., 2023, 2022,…) or the name of a variable (i.e., amount, profit,…). When multiple pivot tables are integrated into a flat table, the page is essential to distinguish the origin of the data. It is considered as an additional label.

The workflow is generally as follows:

  1. Explore the table to determine its distribution and characteristics. If we start from a list of pivot_table objects, we will explore each one of the tables. In order to transform them together, they should have homogeneous structure. We will use member reference (instead of list slicing) to access the objects in the list. Example: pt <- lpt[[1]].

  2. In case the text table contains multiple pivot tables, they can be obtained using divide(), which returns a list of pivot_table objects; therefore, we return to the first step.

  3. Define the characteristics of the pivot table: Number of rows and columns with labels, and page value.

  4. Remove the rows and columns that are not part of the labels or matrix of values: It should only contain the rows and columns of labels and a matrix of values.

Therefore, we still need to review the functions for these last two steps.: Functions to define the pivot table characteristics, and to remove the rows and columns that are not part of it.

Define pivot table characteristics

  • get_page() and set_page(): The page value is defined when importing data, sometimes it is included in the file or spreadsheet name. Using these functions, you can get the defined values and redefine them. The content of a table cell or string can be defined as a page value. Example:
pt <- pt |> set_page(1, 1)
  • define_labels(): This function defines the quantity of rows and columns that contain labels. Example:
pt <- pt |> define_labels(n_col = 2, n_row = 2)

Remove rows and columns

Remove rows and columns that are not part of the pivot table. The most frequent situation will be having to eliminate the header or footer of the table (top and bottom rows), the rest of the functions are defined to try to contemplate all possible cases. Example:

pt <- pt |> remove_top(1)

Pivot table transformation

Once a pivot_table object only contains pivot table data, and its attributes have been defined, it could be transformed into a flat table. However, we can take advantage of the table structure to modify and complete it. Therefore, optionally, we can complete and transform the components of the pivot table: Labels and values.

Transform labels

  • fill_labels(): Fills missing values in row and column labels for a pivot table. When there is more than one row or column with labels, the first ones usually do not repeat the values. In the illustrative example, this occurs in column c1 and row r2. By default, in columns they are filled down, in rows to the right. Example:
pt <- pt |> fill_labels()
  • remove_agg(): Removes pivot table rows and columns that contain aggregated data. Aggregated data is recognized exclusively because the label of the row or column closest to the matrix of values is empty. Example:
pt <- pt |> remove_agg()
  • extract_labels(): Sometimes a table column includes values of multiple label fields, this is generally known as compact table format. Given a column number and a set of labels, it generates a new column with the labels located at the positions they occupied in the original column and removes them from it. Example:
pt <- pivot_table(df_ex_compact) |>
  extract_labels(col = 1,
                 labels = c("b1", "b2", "b3", "b4", "Total general"))
  • get_col_values(): To facilitate the study of the labels included in the same column of several tables, this function gets the values of the indicated column in a list of tables. It may be useful to use it before extract_labels(). Example:
file <- system.file("extdata", "csv/set_v_compact.csv", package = "flattabler")
pt <- read_text_file(file)
lpt <- pt |> divide()

df <- get_col_values(lpt, start_row = 4)
labels <- sort(unique(df$label))

Transform values

  • fill_values(): The array of values has gaps that, instead of having a numeric value, have an empty string. This operation fills with NA missing values in a pivot table value array. Example:
pt <- pt |> fill_values()
  • remove_k(): Values sometimes include a thousands separator that can be removed using this function. Example:
pt <- pt |> remove_k()
  • replace_dec(): Values sometimes include a decimal separator different from the one needed; it can be replaced using this function. Example:
pt <- pt |> replace_dec()

Flat table generation

In order to generate a flat table from a pivot_table object, it is an essential requirement to have properly defined its attributes and that it only contains the pivot table label rows and columns, and the matrix of values. Optionally, if the table has a usual structure, we could have transformed the values and labels, if necessary.

We can generate a flat table from a pivot table (a pivot_table object) or from a list of pivot tables (a list of pivot_table objects).

Generation from a pivot table

  • unpivot(): Transforms a pivot table into a flat table (implemented by a tibble). An additional column with page information can be included. NA values can be excluded from the array of values. Example:
ft <- pivot_table(df_ex) |>
  set_page(1, 1) |>
  remove_top(1) |>
  define_labels(n_col = 2, n_row = 2) |>
  fill_labels() |>
  remove_agg() |>
  fill_values() |>
  remove_k() |>
  replace_dec() |>
  unpivot()

Generation from a list of pivot tables

  • flatten_table_list(): Given a list of pivot_table objects and a transformation function that flattens a pivot_table object, transforms each table using the function and merges the results into a flat table. Example:
f <- function(pt) {
  pt |>
    set_page(1, 1) |>
    define_labels(n_col = 2, n_row = 2) |>
    remove_top(1) |>
    fill_labels() |>
    remove_agg() |>
    fill_values() |>
    remove_k() |>
    replace_dec() |>
    unpivot()
}

ft <- flatten_table_list(lpt, f)

Conclusions

flattabler package offers a set of operations that allow us to transform one or more pivot tables into a flat table. Transformation operations have been designed to be intuitive and easy to use. With them, it has been possible to properly transform all the pivot tables found so far by the author.

If an unforeseen situation arises, the proposed operations are also useful and can be supplemented by operations available in the components of tidyverse package.